Correction du DST n°2

Exercice 1

1. On raisonne par récurrence double.

 u_0 et u_1 sont définis et tous deux strictement positifs.

Supposons que pour un certain rang n, u_n et u_{n+1} soient tous deux définis et strictement positifs. Alors

$$u_{n+2} = \frac{u_n^3}{\sqrt{u_{n+1}}}$$

est bien défini et strictement positif, donc la propriété est vraie pour le rang n+2. Par principe de récurrence on en conclut que pour tout $n \in \mathbb{N}$, u_n est défini et et $u_n > 0$.

2. Pour tout $n \in \mathbb{N}$, $u_n > 0$ donc $\ln(u_n)$ est bien défini.

3. Pour tout
$$n \in \mathbb{N}$$
, $v_{n+2} = \ln(u_{n+2}) = \ln\left(\frac{u_n^3}{\sqrt{u_{n+1}}}\right) = 3\ln(u_n) - \frac{1}{2}\ln(u_{n+1}) = -\frac{1}{2}v_{n+1} + 3v_n$.

4. On déduit de la question précédente que (v_n) est une suite récurrente linéaire d'ordre 2. Son équation caractéristique est : $r^2 = -\frac{1}{2}r + 3$. Elle admet deux solutions réelles : -2 et $\frac{3}{2}$ donc d'après le cours il existe deux réels λ et μ tels que :

$$\forall n \in \mathbb{N}, \quad v_n = \lambda \times (-2)^n + \mu \times \left(\frac{3}{2}\right)^n$$

Comme $v_0 = \ln(u_0) = 0$ et $v_1 = \ln(u_1) = 1$, on a :

$$\begin{cases} \lambda + \mu &= 0 \\ -2\lambda + \frac{3}{2}\mu &= 1 \end{cases}$$

d'où $\lambda = -\frac{2}{7}$ et $\mu = \frac{2}{7}$ et ainsi :

$$\forall n \in \mathbb{N}, \quad v_n = -\frac{2}{7} \times (-2)^n + \frac{2}{7} \times \left(\frac{3}{2}\right)^n$$

Puisque $u_n = e^{v_n}$ pour tout $n \in \mathbb{N}$, on a :

$$\forall n \in \mathbb{N}, \quad u_n = e^{-2 \times (-2)^n / 7} \times e^{2 \times (3/2)^n / 7}$$

donc en posant $A=\mathrm{e}^{-2/7},\,B=\mathrm{e}^{2/7}$ et $r_1=-2,\,r_2=\frac{3}{2}$ on a bien :

$$\forall n \in \mathbb{N}, \quad u_n = A^{r_1^n} \times B^{r_2^n}$$

Exercice 2

- 1. Soit $p \ge 0$ un entier fixé, notons pour tout $n \ge p$, $\mathcal{P}(n) : \sum_{k=p}^{n} {k \choose p} = {n+1 \choose p+1}$.
 - Initialisation : Pour n = p on d'une part :

$$\sum_{k=p}^{p} \binom{k}{p} = \binom{p}{p} = 1$$

et d'autre part :

$$\binom{n+1}{p+1} = \binom{p+1}{p+1} = 1$$

donc $\mathcal{P}(p)$ est vraie.

• **Hérédité**: Supposons que $\mathcal{P}(n)$ est vraie et montrons $\mathcal{P}(n+1)$. On a

$$\begin{split} \sum_{k=p}^{n+1} \binom{k}{p} &= \binom{n+1}{p} + \sum_{k=p}^{n} \binom{k}{p} \\ &= \binom{n+1}{p} + \binom{n+1}{p+1} & \text{par hypoth\`ese de r\'ecurrence} \\ &= \binom{n+2}{p+1} & \text{d'apr\`es la formule de Pascal} \end{split}$$

donc $\mathcal{P}(n+1)$ est vraie.

• Conclusion : Par principe de récurrence on en conclut que pour tout $n \ge p$ on a $\sum_{k=p}^{n} {k \choose p} = {n+1 \choose p+1}$.

Ce raisonnement étant valable quel que soit $p \in \mathbb{N}$, le résultat est vrai pour tout entier $p \ge 0$ et tout entier $n \ge p$.

2. On a

$$\sum_{k=0}^{n} \frac{x^{3k+1}}{2^{2k}} = x \sum_{k=0}^{n} \left(\frac{x^3}{4}\right)^k$$

$$= x \times \frac{\left(\frac{x^3}{4}\right)^{n+1} - 1}{\frac{x^3}{4} - 1}$$

$$= x \frac{x^{3n+3} - 4^{n+1}}{4^n x - 4^{n+1}} p$$

$$= \frac{x^{3n+4} - 4^{n+1} x}{4^n x^3 - 4^{n+1}}$$

3. On a

$$\sum_{k=0}^{n} (3k-2)^2 = \sum_{k=0}^{n} (9k^2 - 12k + 4)$$

$$= 9\sum_{k=0}^{n} k^2 - 12\sum_{k=0}^{n} k + 4\sum_{k=0}^{n} 1$$

$$= 9\frac{n(n+1)(2n+1)}{6} - 12\frac{n(n+1)}{2} + 4(n+1)$$

$$= \frac{3n(n+1)(2n+1) - 12n(n+1) + 8(n+1)}{2}$$

$$= \frac{(n+1)(3n(2n+1) - 12n + 8)}{2}$$

$$= \frac{(n+1)(6n^2 - 9n + 8)}{2}$$

4. (a) Soit $k \in \{1, ..., n\}$. Alors :

$$k \times \binom{n}{k} = k \times \frac{n!}{k!(n-k)!}$$

$$= \frac{n!}{(k-1)!(n-k)!}$$

$$= n \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= n \times \binom{n-1}{k-1}$$

(b) On a

$$\begin{split} \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} &= \sum_{k=1}^{n} n \binom{n-1}{k-1} p^{k} (1-p)^{n-k} \\ &= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)} \\ &= np \sum_{k'=0}^{n-1} \binom{n-1}{k'} p^{k'-1} (1-p)^{n-1-k'} \\ &= np (p+(1-p))^{n-1} \qquad \qquad \text{d'après la formule du binôme de Newton} \\ &= np \end{split}$$

Exercice 3

- 1. $A + B = \{-1, 2, 3, 6\}$
- 2. Montrons que A + B =]-1, 6]:

Si $x \in A+B$, alors il existe $a \in A$ et $b \in B$ tels que x=a+b. Comme $-2 \le a \le 2$ et $1 < b \le 4$ on a $-1 < a+b \le 6$ par somme d'inégalités, donc $x \in]-1,6]$. On a montré que $A+B \subset]-1,6]$.

Réciproquement, si $x \in]-1,6]$, on distingue trois cas :

- Si $x \in]1,4]$, on peut poser $a=0 \in A$ et $b=x \in B$ de sorte que x=a+b donc $x \in A+B$.
- Si $x \in]-1,1]$, alors en posant a=-2 et b=x+2 on a $a \in A$ et $b \in B$ et x=a+b donc $x \in A+B$.
- Si $x \in [4, 6]$, alors en posant a = 2 et b = x 2 on a $a \in A$ et $b \in B$ et x = a + b donc $x \in A + B$.

on a donc montré que $]-1,6] \subset A+B$.

Ainsi on a bien A + B =]-1, 6].

3. Soit $x \in A + \mathbb{R}$, alors $x \in \mathbb{R}$ par définition (pour tout $A, B \subset \mathbb{R}$, $A + B \subset \mathbb{R}$).

Réciproquement : soit $x \in \mathbb{R}$ et soit $a \in A$ (qui existe car $A \neq \emptyset$), alors x = a + x - a avec $a \in A$ et $x - a \in \mathbb{R}$, donc $x \in A + \mathbb{R}$.

On a donc montré par double inclusion que $A + \mathbb{R} = \mathbb{R}$

- 4. Soit $x \in A + B$. Il existe $a \in A$ et $b \in B$ tels que x = a + b, mais par inclusion $a \in C$ et $b \in D$ donc $x \in C + D$. Ainsi $A + B \subset C + D$.
- 5. Si $x \in (A+C) \cup (B+C)$, alors x = a+c ou x = b+c avec $(a,b,c) \in A \times B \times C$.
 - Si x = a + c, comme $a \in A$ on a $a \in A \cup B$ donc $x \in (A \cup B) + C$.
 - Si x = b + c, comme $b \in B$ on a $b \in A \cup B$ donc $x \in (A \cup B) + C$

dans tous les cas $x \in (A \cup B) + C$.

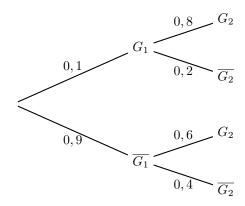
Réciproquement, si $x \in (A \cup B) + C$ on a x = y + c avec $y \in A \cup B$. Si $y \in A$, alors $x \in A + C$ et si $y \in B$ on a $x \in B + C$, donc dans tous les cas $x \in (A + C) \cup (B + C)$.

Par double inclusion : $(A + C) \cup (B + C) = (A \cup B) + C$

- 6. (a) $\sup A$ est un majorant de A et $\sup B$ un majorant de B. Si $x \in A + B$, alors x = a + b avec $a \in A$ et $b \in B$, donc $a \le \sup A$ et $b \le \sup B$, d'où $x \le \sup A + \sup B$. Ainsi $\sup A + \sup B$ est un majorant de A + B.
 - (b) On a déjà montré que $\sup A + \sup B$ est un majorant de A + B. Il faut montrer que $\sup A + \sup B$ est le plus petit des majorants de A + B. Soit $m < \sup A + \sup B$, montrons qu'il existe $x \in A + B$ tel que m < x. On a $m \sup B < \sup A$ donc il existe $a \in A$ tel que $m \sup B < a$. On a ensuite $m a < \sup B$ donc il existe $b \in B$ tel que m a < b, d'où m < a + b avec $a + b \in A + B$. Ainsi on a bien $\sup A + \sup B = \sup(A + B)$.
- 7. (a) Soit $y \in f(A+B)$. Alors il existe $x = a+b \in A+B$ tel que y = f(x) = f(a) + f(b) par hypothèse sur f. Comme $f(a) \in f(A)$ et $f(b) \in f(B)$, on a bien $y \in f(A) + f(B)$. Réciproquement, si $y \in f(A) + f(B)$, il existe $a \in A$ et $b \in B$ tel que y = f(a) + f(b) = f(a+b) donc $y \in f(A+B)$. Par double inclusion : f(A+B) = f(A) + f(B).
 - (b) Si $x \in f^{-1}(A) + f^{-1}(B)$, alors x = a + b avec $a \in f^{-1}(A)$ et $b \in f^{-1}(B)$ donc f(x) = f(a) + f(b) avec $f(a) \in A$ et $f(b) \in B$ donc $f(x) \in A + B$ donc $x \in f^{-1}(A + B)$. Ainsi $f^{-1}(A) + f^{-1}(B) \subset f^{-1}(A + B)$.

Exercice 4

1. On peut représenter la situation par l'arbre de probabilité suivant :



donc

$$\begin{aligned} p_2 &= \mathbb{P}(G_2) \\ &= \mathbb{P}(G_1 \cap G_2) + \mathbb{P}(\overline{G_1} \cap G_2) \\ &= \mathbb{P}(G_1) \times \mathbb{P}(G_2|G_1) + \mathbb{P}(\overline{G_1}) \times \mathbb{P}(G_2|\overline{G_1}) \\ &= 0, 1 \times 0, 8 + 0, 9 \times 0, 6 \\ &= \frac{4 + 27}{50} \\ &= \frac{31}{50} \end{aligned}$$
 (formule des probabilités totales)

2. On a

$$\mathbb{P}(\overline{G_1}|G_2) = \frac{\mathbb{P}(\overline{G_1} \cap G_2)}{\mathbb{P}(G_2)}$$
$$= \frac{\frac{9}{10} \times \frac{3}{5}}{\frac{31}{50}}$$
$$= \frac{27}{31}$$

La probabilité qu'il ait raté le premier lancer sachant qu'il a marqué le deuxième est $\frac{27}{31}$.

3. Cherchons la probabilité de l'événement contraire, c'est à dire la probabilité que le joueur ne marque aucun panier sur les trois premiers lancers :

$$\mathbb{P}(\overline{G_1} \cap \overline{G_2} \cap \overline{G_3}) = \mathbb{P}(\overline{G_1}) \times \mathbb{P}(\overline{G_2}|\overline{G_1}) \times \mathbb{P}(\overline{G_3}|G_1 \cap G_2) \qquad \text{(formule des probabilités composées)}$$

$$= 0, 9 \times 0, 4 \times 0, 4$$

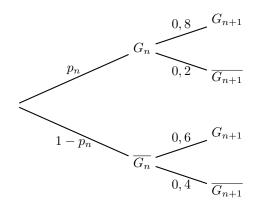
$$= \frac{9}{10} \times \frac{2}{5} \times \frac{2}{5}$$

$$= \frac{36}{250}$$

$$= \frac{18}{125}$$

donc la probabilité qu'il marque au moins un panier est $1 - \frac{18}{125} = \frac{107}{125}$

4. On représente la situation par un arbre. Pour tout entier $n \ge 1$ on a :



On a donc

$$\begin{split} p_{n+1} &= \mathbb{P}(G_{n+1}) \\ &= \mathbb{P}(G_n) \times \mathbb{P}(G_{n+1}|G_n) + \mathbb{P}(\overline{G_n}) \times \mathbb{P}(G_{n+1}|G_n) \\ &= p_n \times 0, 8 + (1 - p_n) \times 0, 6 \\ &= \frac{4}{5}p_n + \frac{3}{5} - \frac{3}{5}p_n \\ &= \frac{1}{5}p_n + \frac{3}{5} \end{split}$$

5. Soit $a \in \mathbb{R}$, posons $u_n = p_n - a$. Alors

$$u_{n+1} = p_{n+1} - a$$

$$= \frac{1}{5}p_n + \frac{3}{5} - a$$

$$= \frac{1}{5}u_n + \frac{1}{5}a + \frac{3}{5} - a$$

$$= \frac{1}{5}u_n + \frac{3}{5} - \frac{4}{5}a$$

ainsi, (u_n) est une suite géométrique si et seulement si $\frac{3}{5} - \frac{4}{5}a = 0$, si et seulement si $a = \frac{3}{4}$.

6. La suite (u_n) définie par $u_n = p_n - \frac{3}{4}$ est une suite géométrique de raison $\frac{1}{5}$ d'après la question précédente. On a donc pour tout entier $n \ge 1$:

$$u_n = u_1 \times \left(\frac{1}{5}\right)^{n-1} = \left(0, 1 - \frac{3}{4}\right) \times \left(\frac{1}{5}\right)^{n-1} = -\frac{13}{20} \times \left(\frac{1}{5}\right)^{n-1}$$

et donc

$$\forall n \ge 1, \quad p_n = \frac{3}{4} - \frac{13}{20} \times \left(\frac{1}{5}\right)^{n-1}$$

7. Comme
$$\left|\frac{1}{5}\right| < 1$$
 on a $\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0$ donc $\lim_{n \to +\infty} p_n = \frac{3}{4}$.

Exercice 5

Partie I

1. (a) On a pour tout réel x:

$$f_n(x) - (nx - 2) = \frac{-2e^x}{1 + e^x} + 2$$

= $\frac{-2}{e^{-x} + 1} + 2$

et $\lim_{x\to+\infty} \frac{-2}{\mathrm{e}^{-x}+1} = -2$ par opérations usuelles donc $\lim_{x\to+\infty} (f_n(x) - (nx-2)) = 0$, la droite d'équation y = nx-2 est bien asymptote à \mathcal{C}_n en $+\infty$.

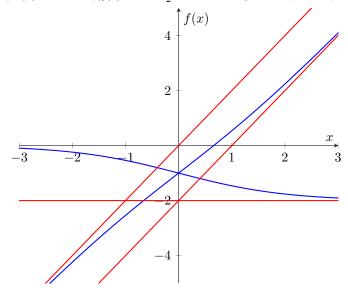
- (b) On a $\lim_{x \to -\infty} \frac{2 e^x}{1 + e^x} = 0$ par opérations usuelles, donc $\lim_{x \to -\infty} (f_n(x) nx) = 0$. On en déduit que la droite d'équation y = nx est asymptote à C_n en $-\infty$.
- 2. (a) $\forall x \in \mathbb{R}, 1 + e^x \ge 1 > 0$ donc ne s'annule pas, et les fonctions $x \mapsto 2e^x$ et $x \mapsto 1 + e^x$ sont dérivables sur \mathbb{R} . Enfin la fonction $x \mapsto nx$ est dérivable sur \mathbb{R} , donc par opérations f_n est dérivable sur \mathbb{R} .

$$\forall x \in \mathbb{R}, \quad f'_n(x) = n - \frac{2e^x(1+e^x) - 2(e^x)^2}{(1+e^x)^2}$$
$$= n - \frac{2e^x + 2e^{2x} - 2e^{2x}}{(1+e^x)^2}$$
$$= n - \frac{2e^x}{(1+e^x)^2}$$

(b) Pour tout $x \in \mathbb{R}$, on a $(1 - e^x)^2 \ge 0$ donc $1 - 2e^x + e^{2x} \ge 0$ donc $1 + 2e^x + e^{2x} \ge 4e^x$ donc $(1 + e^x)^2 \ge 4e^x$ d'où, comme $(1 + e^x)^2 > 0$:

$$\frac{4 e^x}{(1+e^x)^2} \le 1$$

- (c) Si n = 0, alors on a immédiatement $f'_n(x) < 0$ pour tout $x \in \mathbb{R}$, donc f_n est strictement décroissante. Si $n \ge 1$, alors $\frac{2 e^x}{(1 + e^x)^2} \le \frac{1}{2} < n$ d'après la question précédente donc $f'_n(x) > 0$ et f_n est strictement croissante sur \mathbb{R} .
- (d) La tangente à C_n au point I d'abscisse 0 a pour équation $y = f'_n(0)(x-0) + f_n(0)$. $f_n(0) = -1$ et $f'_n(0) = n - \frac{1}{2}$ donc la tangente a pour équation $y = (n - \frac{1}{2})x - 1$



Partie I

(e)

3. Posons $g(x) = f_0(x) - x$. g est strictement décroissante sur $\mathbb R$ comme somme de fonctions strictement décroissantes, et $\lim_{x \to -\infty} = +\infty$, $\lim_{x \to +\infty} g(x) = -\infty$ (car f_0 a une limite finie en $+\infty$ et en $-\infty$ d'après la partie I).

Enfin, g est continue comme somme de fonctions dérivables donc continues. D'après le théorème des valeurs intermédiaires, il existe donc un unique réel α tel que $g(\alpha) = 0$, c'est donc l'unique réel vérifiant $f_0(\alpha) = \alpha$.

Puisque $g(0) = f_0(0) = -1 < 0$, et que g est décroissante, on a $\alpha \le 0$

4. (a) Posons $\varphi(h) = h e^h + h - 2 e^h + 2$. Cette fonction est dérivable sur \mathbb{R} comme somme et produit de fonctions dérivables, et

$$\forall h \in \mathbb{R}, \quad \varphi'(h) = h e^h + e^h + 1 - 2 e^h = h e^h + 1 - e^h$$

 φ' est encore dérivable sur $\mathbb R$ et :

$$\forall h \in \mathbb{R}, \quad \varphi''(h) = e^h + h e^h - e^h = h e^h$$

donc φ'' est du signe de h:

x	$-\infty$ 0 $+\infty$
φ''	- 0 +
arphi'	0
arphi'	+ 0 +

donc φ est croissante sur \mathbb{R} , et comme $\varphi(0)=0$ on en déduit que $\forall h>0, \, \varphi(h)\geq 0$ donc

$$h(e^h + 1) - 2(e^h - 1) \ge 0$$

d'où

$$\frac{e^h - 1}{h} \le \frac{e^h + 1}{2}$$

car h > 0

(b) Comme $\frac{e^x - e^y}{x - y} = \frac{e^y - e^x}{y - x}$, on peut supposer sans perte de généralité que x > y. Alors

$$\left| \frac{e^x - e^y}{x - y} \right| = \frac{e^x - e^y}{x - y}$$
$$= e^y \frac{e^{x - y} - 1}{x - y}$$
$$\le e^y \frac{e^{x - y} + 1}{2}$$
$$\le \frac{e^x + e^y}{2}$$

d'après l'inégalité précédente et car $e^y > 0$

(c) On a:

$$(1+e^x)(1+e^y) \ge 2(e^x+e^y) \Longleftrightarrow 1+e^x+e^y+e^{x+y} \ge 2\,e^x+2e^y$$

$$\Longleftrightarrow 1-e^x-e^y+e^{x+y} \ge 0$$

$$\Longleftrightarrow (1-e^x)(1-e^y) \ge 0$$

$$\Longleftrightarrow (1-e^x) \text{ et } (1-e^y) \text{ sont de même signes}$$

$$\Longleftrightarrow x \text{ et } y \text{ sont de même signe}$$

 $car 1 - e^x$ a un signe opposé à x.

(d) Soient x et y de même signe, on a :

$$|f_0(x) - f_0(y)| = \left| \frac{2e^y}{1 + e^y} - \frac{2e^x}{1 + e^x} \right|$$

$$= \left| \frac{2e^y(1 + e^x) - 2e^x(1 + e^y)}{(1 + e^x)(1 + e^y)} \right|$$

$$= \left| \frac{2(e^y - e^x)}{(1 + e^x)(1 + e^y)} \right|$$

Or en combinant les deux inégalités précédentes on obtient :

$$\left| \frac{e^x - e^y}{x - y} \right| \le \frac{1}{4} (1 + e^x)(1 + e^y)$$

donc

$$\left| \frac{2(e^x - e^y)}{(1 + e^x)(1 + e^y)} \right| \le \frac{1}{2} |x - y|$$

d'où le résultat voulu.

- (e) $u_0 \le 0$, et pour tout $n \in \mathbb{N}$, $u_{n+1} = f_0(u_n)$ avec f_0 une fonction à valeur négative, donc $u_n \le 0$ pour tout entier naturel n.
- (f) Soit $n \in \mathbb{N}$. On a $u_{n+1} = f_0(u_n)$ et $\alpha = f(\alpha)$, on peut donc écrire :

$$|u_{n+1} - \alpha| = |f(u_n) - f(\alpha)| \le \frac{1}{2} |u_n - \alpha|$$

d'après la question 6.d

(g) Pour n = 0 on a $|u_0 - \alpha| = |-\alpha| = |\alpha|$, et $\left(\frac{1}{2}\right)^0 |\alpha| = |\alpha|$. L'inégalité est donc vraie au rang n = 0Supposons qu'on ait $|u_n - \alpha| \le \left(\frac{1}{2}\right)^n |\alpha|$ pour un certain entier n, alors d'après la question précédente :

$$|u_{n+1} - \alpha| \le \frac{1}{2} |u_n - \alpha|$$

$$\le \frac{1}{2} \times \left(\frac{1}{2}\right)^n |\alpha|$$

$$\le \left(\frac{1}{2}\right)^{n+1} |\alpha|$$

donc l'inégalité est vraie au rang n+1.

L'inégalité est vraie pour n=0 et la propriété est héréditaire donc pour tout $n \in \mathbb{N}$, on a $|u_n - \alpha| \leq \left(\frac{1}{2}\right)^n |\alpha|$.

(h) Comme $\left|\frac{1}{2}\right| < 1$ on a $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$ donc $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n |\alpha| = 0$, donc $\lim_{n \to +\infty} |u_n - \alpha| = 0$ par encadrement. On en conclut que $\lim_{n \to +\infty} u_n = \alpha$.

Partie III

- 5. (a) f_n est strictement croissante d'après la partie I, et $\lim_{x\to -\infty} f_n(x) = -\infty$ et $\lim_{x\to +\infty} f_n(x) = +\infty$. Enfin f_n est continue sur $\mathbb R$ donc d'après le corollaire du théorème des valeurs intermédiaires il existe un unique réel x_n tel que $f_n(x_n) = 0$.
 - (b) $f_n(0) = -1$ et $f_n(1) = n \frac{2 e}{1 + e}$ D'après l'énoncé, $\frac{-2 e}{1 + e} > -1,47$ donc $n \frac{2 e}{1 + e} > n 1,47$ et comme $n \ge 2$ on a $f_n(1) > 0,53 > 0$, donc f_n s'annule entre 0 et 1 et donc $0 < x_n < 1$.

- 6. (a) Soit $n \ge 2$. On a $f_{n+1}(x_n) = (n+1)x_n \frac{2e^{x_n}}{1+e^{x_n}} = x_n + nx_n \frac{2e^{x_n}}{1+e^{x_n}} = x_n + f_n(x_n)$. Or $f_n(x_n) = 0$ donc $f_{n+1}(x_n) = x_n > 0$.
 - (b) Comme $f_{n+1}(0) = -1$ et $f_{n+1}(x_n) > 0$, on en déduit que f_{n+1} s'annule entre 0 et x_n exclus donc $0 < x_{n+1} < x_n$, et ce quel que soit l'entier $n \ge 2$. (x_n) est donc strictement décroissante.
 - (c) (x_n) est décroissante et minorée par 0 donc converge vers un réel ℓ .
- 7. (a) Pour tout $n \ge 2$ on a $f_n(x_n) = 0$ donc

$$nx_n - \frac{2e^{x_n}}{1 + e^{x_n}} = 0$$

d'où $nx_n = \frac{2e^{x_n}}{1+e^{x_n}}$. Or, par décroissance stricte de f_0 , on a

$$f_0(0) > f_0(x_n) > f_0(1)$$

donc

$$-1 > \frac{-2e^{x_n}}{1 + e^{x_n}} > \frac{-2e}{1 + e}$$

donc

$$1 < \frac{2e^{x_n}}{1 + e^{x_n}} < \frac{2e}{1 + e}$$

d'où l'encadrement voulu en divisant par n :

$$\frac{1}{n} < x_n < \frac{1}{n} \frac{2e}{1+e}$$

(b) Comme $\lim_{n\to+\infty} \frac{1}{n} = \lim_{n\to+\infty} \frac{1}{n} \left(\frac{2e}{1+e} \right) = 0$, on a par encadrement $\lim_{n\to+\infty} x_n = 0$.

Comme pour tout $n \in \mathbb{N}$, $nx_n = \frac{2e^{x_n}}{1+e^{x_n}}$ et que $\lim_{n \to +\infty} x_n = 0$, on obtient en passant à la limite et par continuité de $x \mapsto \frac{2e^x}{1+e^x}$: $\lim_{n \to +\infty} nx_n = \frac{2e^0}{1+e^0} = 1$. Ainsi $x_n \underset{n \to +\infty}{\sim} \frac{1}{n}$.